
blocklib
Release 0.1.7

Dec 11, 2020





Contents

1 Table of Contents 3
1.1 Tutorials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Blocking Schema . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3 Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.4 Devops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.5 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2 External Links 17

Bibliography 19

i



ii



blocklib, Release 0.1.7

blocklib is a python implementation of record linkage blocking techniques. Blocking is a technique that makes record
linkage scalable. It is achieved by partitioning datasets into groups, called blocks and only comparing records in
corresponding blocks. This can reduce the number of comparisons that need to be conducted to find which pairs of
records should be linked.

Note that it is part of anonlink system which includes libraries for encoding, command line tools and Rest API:

• clkhash

• anonlink-client

• anonlink-entity-service

Blocklib is Apache 2.0 licensed, supports Python version 3.5+ and run on Windows, OSX and Linux.

Install with pip:

pip install blocklib

Contents 1

https://github.com/data61/clkhash
https://github.com/data61/anonlink-client
https://github.com/data61/anonlink-entity-service


blocklib, Release 0.1.7

2 Contents



CHAPTER 1

Table of Contents

1.1 Tutorials

blocklib library is a Python-implementaion of various blocking techniques in record linkage. The tutorial
tutorial_blocking.ipynb shows current supported blocking methods and how to use and assess them.

1.1.1 Blocking API

Blocking is a technique that makes record linkage scalable. It is achieved by partitioning datasets into groups, called
blocks and only comparing records in corresponding blocks. This can reduce the number of comparisons that need to
be conducted to find which pairs of records should be linked.

There are two main metrics to evaluate a blocking technique - reduction ratio and pair completeness.

Reduction Ratio

Reduction ratio measures the proportion of number of comparisons reduced by using blocking technique. If we have
two data providers each has 𝑁 number of records, then

reduction ratio = 1 − number of comparisons after blocking
𝑁2

Pair Completeness

Pair completeness measure how many true matches are maintained after blocking. It is evalauted as

pair completeness = 1 − number of true matches after blocking
number of all true matches

Different blocking techniques have different methods to partition datasets in order to reduce as much number of
comparisons as possible while maintain high pair completeness.

In this tutorial, we demonstrate how to use blocking in privacy preserving record linkage.

Load example Nothern Carolina voter registration dataset:

3



blocklib, Release 0.1.7

[1]: # NBVAL_IGNORE_OUTPUT
import pandas as pd

df_alice = pd.read_csv('data/alice.csv')
df_alice.head()

[1]: recid givenname surname suburb pc
0 761859 kate chapman brighton 4017
1 1384455 lian hurse carisbrook 3464
2 1933333 matthew russo bardon 4065
3 1564695 lorraine zammit minchinbury 2770
4 5971993 ingo richardson woolsthorpe 3276

In this dataset, recid is the voter registration number. So we are able to verify the quality of a linkage between
snapshots of this dataset taken at different times. pc refers to postcode.

Next step is to config a blocking job. Before we do that, let’s look at the blocking methods we are currently supporting:

1. Probabilistic signature (p-sig)

2. LSH based Λ-fold redundant (lambda-fold)

Let’s firstly look at P-sig

Blocking Methods - Probabilistic signature (p-sig)

The high level idea behind this blocking method is that it uses signatures as the blocking key and place only records
having same signatures into the same block. You can find the original paper here: Scalable Entity Resolution Using
Probabilistic Signatures on Parallel Databases.

Detailed steps and explanations are in the following.

Let’s see an example of configuration for p-sig

[2]: blocking_config = {
"type": "p-sig",
"version": 1,
"config": {

"blocking-features": [1, 2],
# "record-id-col": 0,

"filter": {
"type": "ratio",
"max": 0.02,
"min": 0.00,

},
"blocking-filter": {

"type": "bloom filter",
"number-hash-functions": 4,
"bf-len": 2048,

},
"signatureSpecs": [

[
{"type": "characters-at", "config": {"pos": [0]}, "feature": 1},
{"type": "characters-at", "config": {"pos": [0]}, "feature": 2},

],
[

{"type": "metaphone", "feature": 1},
{"type": "metaphone", "feature": 2},

]
(continues on next page)

4 Chapter 1. Table of Contents

https://arxiv.org/abs/1712.09691
https://arxiv.org/abs/1712.09691


blocklib, Release 0.1.7

(continued from previous page)

]
}

}

Step1 - Generate Signature

For a record r, a signature is a sub-record derived from record r with a signature strategy. An example signature
strategy is to concatenate the initials of first and last name, e.g., the signature for record "John White" is "JW".

We provide the following signature strategies:

• feature-value: the signature is generated by returning the selected feature

• characters-at: the signature is generated by selecting a single character or a sequence of characters from selected
feature

• metaphone: the signature is generated by phonetic encoding the selected feature using metaphone

The output of this step is a reversed index where keys are generated signatures / blocking key and the values are list of
corresponding record IDs. A record ID could be row index or the actual record identifier if it is available in the dataset.

Signature strategies are defined in the signatureSpecs section. For example, in the above configuration, we are
going to generate two signatures for each record. The first signature is a combination of 3 different signature strategies

{"type": "characters-at", "config": {"pos": [0]}, "feature": 1},
{"type": "characters-at", "config": {"pos": [0]}, "feature": 2},
{"type": "feature-value", "feature_idx": 4}

It combines the initials of first and last name and postcode.

The second signature is generated by a combination of 2 signature strategies:

{"type": "metaphone", "feature": 1},
{"type": "metaphone", "feature": 2},

That is phonetic encoding of first name and last name.

One signature corresponds to one block. I will use signature and block interchangeably but they mean the same thing.

Step2 - Filter Too Frequent Signatures

A signature is assumed to identify a record as uniquely as possible. Therefore, we need to filter out some too frequent
signatures since they can uniquely identify the record. On the otherside, we want to be resilient to frequency attack,
so we need to filter out too rare signature that only contains very few records. The configuration of filtering is in the
filter part. For example, in the above configuration, the filter section is configured as:

"filter": {
"type": "ratio",
"max": 0.02,
"min": 0.001,

}

Then we will filter out all signatures / blocks whose number of records is greater than 2% of number of total records
or is less than 0.1% of number of total records.

Note that we also support absoulte filtering configuration i.e. filter by number of counts. For example:

"filter": {
"type": "count",
"max": 100,

(continues on next page)

1.1. Tutorials 5



blocklib, Release 0.1.7

(continued from previous page)

"min": 5,
}

Step3 - Anonymization

Given we want to do privacy preserving record linkage, the signatures need to be hashed to avoid leaking of PII
information. The most frequent used data structure of such encoding is Bloom Filter. Here we use one Bloom Filter
and map all filtered signatures into that Bloom Filter. The configuration of Bloom Filter is in block-filter section:

"blocking-filter": {
"type": "bloom filter",
"number-hash-functions": 20,
"bf-len": 2048,

}

After anonymization, the signature becomes the set of indices of bits 1 in the bloom filter and hence can preseve the
privacy of data for each data provider.

Carry out Blocking Job

Okay, once you have a good understanding of the P-Sig blocking, we can carry out our blocking job with blocklib.
First, we need to process the data since blocklib only accept list of tuples or lists as input data. An example data
input for blocklib is

[
[761859, 'kate', 'chapman', 'brighton', 4017],
[1384455, 'lian', 'hurse', 'carisbrook', 3464],
[1933333, 'matthew', 'russo', 'bardon', 4065],
[1564695, 'lorraine', 'zammit', 'minchinbury', 2770],
[5971993, 'ingo', 'richardson', 'woolsthorpe', 3276]

]

Step1 - Generate Candidate Blocks for Party A - Alice

[3]: # NBVAL_IGNORE_OUTPUT
data_alice = df_alice.to_dict(orient='split')['data']
print("Example PII", data_alice[0])

Example PII [761859, 'kate', 'chapman', 'brighton', 4017]

[4]: # NBVAL_IGNORE_OUTPUT
from blocklib import generate_candidate_blocks

block_obj_alice = generate_candidate_blocks(data_alice, blocking_config)

P-Sig: 100.0% records are covered in blocks
Statistics for the generated blocks:

Number of Blocks: 5029
Minimum Block Size: 1
Maximum Block Size: 61
Average Block Size: 1.8337641678266057
Median Block Size: 1
Standard Deviation of Block Size: 3.8368431973204213

The statistics of blocks are printed for you to inspect the block distribution and decide if this is a good blocking result.
Here both average and median block sizes are 1 which is resilient to frequency attack.

6 Chapter 1. Table of Contents



blocklib, Release 0.1.7

You can get the blocking instance and blocks/reversed indice in the block_obj_alice. Let’s look at the first block
in the reversed indcies:

[5]: # NBVAL_IGNORE_OUTPUT
print(block_obj_alice.state)
list(block_obj_alice.blocks.keys())[0]

<blocklib.pprlpsig.PPRLIndexPSignature object at 0x115973510>

[5]: '(1560, 401, 491, 1470)'

To protect the privacy of data, the signature / blocking key is not the original signature such as JW. Instead, it is a list
of mapped indices of bits 1 in Bloom Filter of JW. Next we want to do the same thing for another party - Bob.

Step2 - Generate Candidate Blocks for Party B - Bob

[6]: # NBVAL_IGNORE_OUTPUT
df_bob = pd.read_csv('data/bob.csv')
data_bob = df_bob.to_dict(orient='split')['data']
block_obj_bob = generate_candidate_blocks(data_bob, blocking_config)
print(block_obj_bob.state)
print(list(block_obj_bob.blocks.keys())[0])
print(list(block_obj_bob.blocks.values())[1])

P-Sig: 100.0% records are covered in blocks
Statistics for the generated blocks:

Number of Blocks: 5018
Minimum Block Size: 1
Maximum Block Size: 59
Average Block Size: 1.8377839776803508
Median Block Size: 1
Standard Deviation of Block Size: 3.838423809405143

<blocklib.pprlpsig.PPRLIndexPSignature object at 0x106318d10>
(1098, 707, 316, 1973)
[1, 25, 765, 1078, 1166, 1203, 1273, 1531, 1621, 1625, 1755, 1965, 2027, 2824, 3106,
→˓3125, 3414, 3501, 3610, 4033, 4139, 4472, 4579]

Generate Final Blocks

Now we have candidate blocks from both parties, we can generate final blocks by only including signatures that
appear in both parties. Instead of directly comparing signature, the algorithm will firstly map the list of signatures into
a Bloom Filter for for each party called the candidate blocking filter, and then creates the combined blocking filter by
only retaining the bits that are present in all candidate filters.

[7]: # NBVAL_IGNORE_OUTPUT
from blocklib import generate_blocks

filtered_blocks_alice, filtered_blocks_bob = generate_blocks([block_obj_alice, block_
→˓obj_bob], K=2)
print('Alice: {} out of {} blocks are in common'.format(len(filtered_blocks_alice),
→˓len(block_obj_alice.blocks)))
print('Bob: {} out of {} blocks are in common'.format(len(filtered_blocks_bob),
→˓len(block_obj_bob.blocks)))

Alice: 2793 out of 5029 blocks are in common
Bob: 2793 out of 5018 blocks are in common

1.1. Tutorials 7



blocklib, Release 0.1.7

Assess Blocking

We can assess the blocking result when we have ground truth. There are two main metrics to assess blocking result as
we mentioned in the beginning of this tutorial. Here is a recap:

• reduction ratio: relative reduction in the number of record pairs to be compared.

• pair completeness: the percentage of true matches after blocking

[8]: # NBVAL_IGNORE_OUTPUT
from blocklib.evaluation import assess_blocks_2party

subdata1 = [x[0] for x in data_alice]
subdata2 = [x[0] for x in data_bob]

rr, pc = assess_blocks_2party([filtered_blocks_alice, filtered_blocks_bob],
[subdata1, subdata2])

assessing blocks: 100%|| 2793/2793 [00:00<00:00, 97204.45key/s]

Feature Name are also Supported!

When there are many columns in the data, it is a bit inconvenient to use feature index. Luckily, blocklib also supports
feature name in the blocking schema:

[14]: blocking_config = {
"type": "p-sig",
"version": 1,
"config": {

"blocking-features": ['givenname', 'surname'],
"filter": {

"type": "ratio",
"max": 0.02,
"min": 0.00,

},
"blocking-filter": {

"type": "bloom filter",
"number-hash-functions": 4,
"bf-len": 2048,

},
"signatureSpecs": [

[
{"type": "characters-at", "config": {"pos": [0]}, "feature":

→˓'givenname'},
{"type": "characters-at", "config": {"pos": [0]}, "feature": 'surname

→˓'},
],
[

{"type": "metaphone", "feature": 'givenname'},
{"type": "metaphone", "feature": 'surname'},

]
]

}
}

When generating candidate blocks, a header is required to pass through:

8 Chapter 1. Table of Contents



blocklib, Release 0.1.7

[15]: data_alice = df_alice.to_dict(orient='split')['data']
header = list(df_alice.columns)

block_obj_alice = generate_candidate_blocks(data_alice, blocking_config,
→˓header=header)

P-Sig: 100.0% records are covered in blocks
Statistics for the generated blocks:

Number of Blocks: 5029
Minimum Block Size: 1
Maximum Block Size: 61
Average Block Size: 1.8337641678266057
Median Block Size: 1
Standard Deviation of Block Size: 3.8368431973204213

Blocking Methods - LSH Based Λ-fold Redundant

Now we look the other blocking method that we support - LSH Based Λ-fold Redundant blocking.This blocking
method uses the a list of selected bits selected randomly from Bloom Filter for each record as block keys. Λ refers
the degree of redundancy i.e. we will conduct LSH-based blocking Λ times, each forms a blocking group. Then those
blocking groups are combined into one blocking results. This will make a record redundant Λ times but will increase
the recall.

Let’s see an example config of it:

[9]: blocking_config = {
"type": "lambda-fold",
"version": 1,
"config": {

"blocking-features": [1, 2],
"Lambda": 5,
"bf-len": 2048,
"num-hash-funcs": 10,
"K": 40,
"random_state": 0,
"input-clks": False

}
}

Now let’s explain the meaning of each argument:

• blocking-features: a list of feature indice that we are going to use to generate blocks

• Lambda: this number denotes the degree of redundancy - 𝐻𝑖, 𝑖 = 1, 2, ...,Λ where each 𝐻𝑖 represents one
independent blocking group

• bf-len: length of Bloom Filter for each record

• num-hash-funcs: number of hash functions used to map record to Bloom Filter

• K: number of bits we selected from Bloom Filter for each record

• random_state: control random seed

Then we can carry out the blocking job and assess the result just like above steps

[10]: # NBVAL_IGNORE_OUTPUT
print('Generating candidate blocks for Alice:')
block_obj_alice = generate_candidate_blocks(data_alice, blocking_config)

(continues on next page)

1.1. Tutorials 9



blocklib, Release 0.1.7

(continued from previous page)

print()
print('Generating candidate blocks for Bob: ')
block_obj_bob = generate_candidate_blocks(data_bob, blocking_config)

Generating candidate blocks for Alice:
Statistics for the generated blocks:

Number of Blocks: 6050
Minimum Block Size: 1
Maximum Block Size: 873
Average Block Size: 3.8107438016528925
Median Block Size: 1
Standard Deviation of Block Size: 20.970313750521722

Generating candidate blocks for Bob:
Statistics for the generated blocks:

Number of Blocks: 6085
Minimum Block Size: 1
Maximum Block Size: 862
Average Block Size: 3.788824979457683
Median Block Size: 1
Standard Deviation of Block Size: 20.71496408472215

[11]: # NBVAL_IGNORE_OUTPUT
filtered_blocks_alice, filtered_blocks_bob = generate_blocks([block_obj_alice, block_
→˓obj_bob], K=2)
print('Alice: {} out of {} blocks are in common'.format(len(filtered_blocks_alice),
→˓len(block_obj_alice.blocks)))
print('Bob: {} out of {} blocks are in common'.format(len(filtered_blocks_bob),
→˓len(block_obj_bob.blocks)))

Alice: 4167 out of 6050 blocks are in common
Bob: 4167 out of 6085 blocks are in common

[12]: # NBVAL_IGNORE_OUTPUT
rr, pc = assess_blocks_2party([filtered_blocks_alice, filtered_blocks_bob],

[subdata1, subdata2])
print('RR={}'.format(rr))
print('PC={}'.format(pc))

assessing blocks: 100%|| 4167/4167 [00:00<00:00, 7690.70key/s]

RR=0.8823915973988634
PC=1.0

1.2 Blocking Schema

Each blocking method has its own configuration and parameters to tune with. To make our API as generic as possible,
we designed the blocking schema to specify the configuration of the blocking method including features to use in
generating blocks and hyperparameters etc.

Currently we support two blocking methods:

• “p-sig”: Probabilistic signature

10 Chapter 1. Table of Contents



blocklib, Release 0.1.7

• “lambda-fold”: LSH based 𝜆-fold

which are proposed by the following publications:

• Scalable Entity Resolution Using Probabilistic Signatures on Parallel Databases

• An LSH-Based Blocking Approach with a Homomorphic Matching Technique for Privacy-Preserving Record
Linkage

The format of the blocking schema is defined in a separate JSON Schema specification document - blocking-
schema.json.

1.2.1 Basic Structure

A blocking schema consists of three parts:

• type, the blocking method to be used

• version, the version number of the hashing schema.

• config, an json configuration of that blocking method that varies with different blocking methods

1.2.2 Example Schema

{
"type": "lambda-fold",
"version": 1,
"config": {
"blocking-features": [1, 2],
"Lambda": 30,
"bf-len": 2048,
"num-hash-funcs": 5,
"K": 20,
"input-clks": true,
"random_state": 0

}
}

1.2.3 Schema Components

type

String value which describes the blocking method.

name detailed description
“p-sig” Probability Signature blocking method from Scalable Entity Resolution Using Probabilistic Signa-

tures on Parallel Databases
“lambda-
fold”

LSH based Lambda Fold Redundant blocking method from Scalable Entity Resolution Using Proba-
bilistic Signatures on Parallel Databases

version

Integer value that indicates the version of blocking schema. Currently the only supported version is 1.

1.2. Blocking Schema 11

https://arxiv.org/abs/1712.09691
https://www.computer.org/csdl/journal/tk/2015/04/06880802/13rRUxASubY
https://www.computer.org/csdl/journal/tk/2015/04/06880802/13rRUxASubY
https://json-schema.org/specification.html
https://github.com/data61/anonlink-client/blob/master/docs/schemas/blocking-schema.json
https://github.com/data61/anonlink-client/blob/master/docs/schemas/blocking-schema.json
https://arxiv.org/abs/1712.09691
https://arxiv.org/abs/1712.09691
https://arxiv.org/abs/1712.09691
https://arxiv.org/abs/1712.09691


blocklib, Release 0.1.7

config

Configuration specific to each blocking method. Next we will detail the specific configuration for supported blocking
methods.

Specific configuration of supported blocking methods can be found here:

• config of p-sig

• config of lambda-fold

Probabilistic Signature Configuration

attribute type description
blocking-features list[integer] specify which features u
filter dictionary filtering threshold
blocking-filter dictionary type of filter to generate blocks
signatureSpecs list of lists signature strategies where each list is a combination of signature strategies

Filter Configuration

attribute type description
type string either “ratio” or “count” that represents proportional or absolute filtering
max numeric for ratio, it should be within 0 and 1; for count, it should not exceed the number of records

Blocking-filter Configuration

attribute type description
type string currently we only support “bloom filter”
number-hash-
functions

inte-
ger

this specifies how many bits will be flipped for each signature

bf-len inte-
ger

defines the length of blocking filter, for bloom filter usually this is 1024 or 2048

SignatureSpecs Configurations

It is better to illustrate this one with an example:

{
"signatureSpecs": [
[
{"type": "characters-at", "config": {"pos": [0]}, "feature-idx": 1},
{"type": "characters-at", "config": {"pos": [0]}, "feature-idx": 2},

],
[
{"type": "metaphone", "feature-idx": 1},
{"type": "metaphone", "feature-idx": 2},

]

(continues on next page)

12 Chapter 1. Table of Contents



blocklib, Release 0.1.7

(continued from previous page)

]
}

here we generate two signatures for each record where each signature is a combination of signatures: - first signature
is the first character of feature at index 1, concatenating with first character of feature at index 2 - second signature is
the metaphone transformation of feature at index 1, concatenating with metaphone transformation of feature at index
2

The following specifies the current supported signature strategies:

strategies description
feature-value exact feature at specified index
characters-at substring of feature
metaphone phonetic encoding of feature

Finally a full example of p-sig blocking schema:

{
"type": "p-sig",
"version": 1,
"config": {

"blocking_features": [1],
"filter": {

"type": "ratio",
"max": 0.02,
"min": 0.00,

},
"blocking-filter": {

"type": "bloom filter",
"number-hash-functions": 4,
"bf-len": 2048,

},
"signatureSpecs": [

[
{"type": "characters-at", "config": {"pos": [0]}, "feature-idx": 1},
{"type": "characters-at", "config": {"pos": [0]}, "feature-idx": 2},

],
[

{"type": "metaphone", "feature-idx": 1},
{"type": "metaphone", "feature-idx": 2},

]
]

}
}

1.2. Blocking Schema 13



blocklib, Release 0.1.7

LSH based 𝜆-fold Configuration

attribute type description
blocking-
features

list[integer] specify which features to used in blocks generation

Lambda integer denotes the degree of redundancy - 𝐻𝑖, 𝑖 = 1, 2, ..., Λ where each 𝐻𝑖 represents one
independent blocking group

bf-len integer length of bloom filter
num-hash-
funcs

integer number of hash functions used to map record to Bloom filter

K integer number of bits we will select from Bloom filter for each reocrd
ran-
dom_state

integer control random seed

input-clks boolean input data is CLKS if true else input data is not CLKS

Here is a full example of lambda-fold blocking schema:

{
"type": "lambda-fold",
"version": 1,
"config": {

"blocking-features": [1, 2],
"Lambda": 5,
"bf-len": 2048,
"num-hash-funcs": 10,
"K": 40,
"random_state": 0,
"input-clks": False

}
}

1.3 Development

1.3.1 Testing

Make sure you have all the required modules before running the tests (modules that are only needed for tests are not
included during installation):

$ pip install -r requirements.txt

Now run the unit tests and print out code coverage with py.test:

$ python -m pytest --cov=blocklib

1.3.2 Type Checking

blocklib uses static typechecking with mypy. To run the type checker (in Python 3.5 or later):

$ pip install mypy
$ mypy blocklib --ignore-missing-imports --strict-optional --no-implicit-optional --
→˓disallow-untyped-calls

14 Chapter 1. Table of Contents



blocklib, Release 0.1.7

1.4 Devops

1.4.1 Azure Pipeline

blocklib is automatically built and tested using Azure Pipeline as part of the Anonlink project.

The continuous integration pipeline is here, and the release pipeline is here

Build Pipeline

The build pipeline is defined in the script azure-pipelines.yml.

There are three top level stages in the build pipeline:

• Static Checks - run typechecking with mypy.

• Test and build - tests the library using pytest with different versions of Python.

• Build Wheel Packages - packages blocklib into wheels and saves the build artifacts.

The Test and build job does:

• install the requirements,

• run tests on Ubuntu 18.04 OS, for Python 3.6, Python 3.7, Python 3.8 and Python 3.9

• publish the test results,

• publish the code coverage,

• package and publish the artifacts.

Release Pipeline

The release pipeline publishes the built wheels and source code to PyPi as blocklib.

Note: The release pipeline requires manual intervention by a Data61 team member.

1.5 References

1.4. Devops 15

https://dev.azure.com/data61/anonlink
https://dev.azure.com/data61/Anonlink/_build?definitionId=5
https://dev.azure.com/data61/Anonlink/_release?_a=releases&definitionId=7
https://pypi.org/project/blocklib/


blocklib, Release 0.1.7

16 Chapter 1. Table of Contents



CHAPTER 2

External Links

• blocklib on Github

• blocklib on Pypi

17

https://github.com/data61/blocklib/
https://pypi.org/project/blocklib/


blocklib, Release 0.1.7

18 Chapter 2. External Links



Bibliography

[Zhang2018] Y Zhang, KS Ng, T Churchill, P Christen - Proceedings of the 27th ACM (2018). Scalable Entity
Resolution Using Probabilistic Signatures on Parallel Databases

[Karapiperis20144] Karapiperis, D. and Verykios, V.S. - IEEE Transactions on Knowledge and Data En-
gineering, 27(4), pp.909-921.(2014) ‘<https://www.computer.org/csdl/journal/tk/2015/04/06880802/
13rRUxASubY>‘_An LSH-Based Blocking Approach with a Homomorphic Matching Technique for
Privacy-Preserving Record Linkage

19

https://arxiv.org/abs/1712.09691
https://arxiv.org/abs/1712.09691
https://www.computer.org/csdl/journal/tk/2015/04/06880802/13rRUxASubY
https://www.computer.org/csdl/journal/tk/2015/04/06880802/13rRUxASubY

	Table of Contents
	Tutorials
	Blocking Schema
	Development
	Devops
	References

	External Links
	Bibliography

